If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-12t-35=0
a = 1; b = -12; c = -35;
Δ = b2-4ac
Δ = -122-4·1·(-35)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{71}}{2*1}=\frac{12-2\sqrt{71}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{71}}{2*1}=\frac{12+2\sqrt{71}}{2} $
| -8.38x=10.71=131.382 | | 3/4(0)+y=1 | | 3x(x-2)=8x2-7x | | 8z-11=6z+5 | | 21+3w=36 | | 1.5x=3x | | 12x-60=204=60/12 | | -14.9=-2.1=v/8 | | 1/2w+11=27 | | -2.2=4.2+y/4 | | 2/3x-0.4(0)=2 | | -7.6=-1.2+v/4 | | 5(3n+3)=6(7n+2)+6 | | 9(2n+4)=6(6n+8)+5 | | Y=90-8x | | 274=11-x | | 2x^4+4=0 | | 0.3x-1.9=0.8 | | 3x=27=27 | | 0-1/2y=2 | | 0.02(y-4)+0.08y=0.20y-0.5 | | 75.8=19.3/c | | -8y-14=3y+19 | | 105=4*x-9 | | 105=4*x+9 | | 2x-1=12x-109 | | 105=4(x-9) | | 105=(x-9)4 | | 31=7(y+3)-2y | | 8(3s+3)=240 | | -3=6(x-7)+7x | | 10-a/a=3a/20-3a |